M1.(a) (i) (At 0 K) particles are stationary / not moving / not vibrating Allow have zero energy. Ignore atoms / ions.

> No disorder / perfect order / maximum order Mark independently.

Bigger change in disorder for L_{2} / boiling compared with L_{1} / melting M2 answer must be in terms of changes in state and not absolute states eg must refer to change from liquid to gas not just gas.
Ignore reference to atoms even if incorrect.
(b) (i) $\Delta G=\Delta H-T \Delta S$
$\Delta H=c$ and $(-) \Delta S=m / \Delta H$ and ΔS are constants (approx)
Allow ΔH is the intercept, and (-) ΔS is the slope / gradient. Can only score M2 if M1 is correct.
(ii) Because the entropy change / ΔS is positive / $T \Delta S$ gets bigger Allow -T Δ S gets more negative
(iii) Not feasible / unfeasible / not spontaneous
(c) (i) $+44.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Allow answer without units but if units given they must be correct (including mol^{-1})
(c) (ii) At $5440 \Delta H=T \Delta S$
$=5440 \times 44.5=242080$
($O R$ using given value $=5440 \times 98=533$ 120)
Mark is for answer to (c)(i) $\times 5440$
$\Delta \mathrm{H}=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
($O R$ using given value $\Delta H=533 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
Mark is for correct answer to M2 with correct units ($\mathrm{J} \mathrm{mol}^{-1}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$) linked to answer.
If answer consequentially correct based on (c)(i) except for incorrect sign (eg-242), max 1 / 3 provided units are correct.

M2.(a) $\quad \Delta G=\Delta H-T \Delta S$
Or expression $\Delta H-T \Delta S$ must be evaluated

If $\Delta \mathrm{G}$ / expression <=0 reaction is feasible
Or any explanation that this expression $<=0$
Do not allow just $\Delta G=0$
(b) The molecules become more disordered / random when water changes from a liquid to a gas / evaporates

For M1 must refer to change in state AND increase in disorder

Therefore the entropy change is positive / Entropy increases
Only score M2 if M1 awarded
$T \Delta S>\Delta H$
Allow M3 for T is large / high (provided M2 is scored)
$\Delta G<0$
Mark M3, M4 independently
(c) (i) Condition is $T=\Delta H / \Delta S$

$$
\Delta S=189-205 / 2-131=-44.5 ;
$$

$$
\Delta H=-242 \text { therefore } T=(-242 \times 1000) /-44.5)
$$

$$
=5438 \mathrm{~K}(\text { allow } 5400-5500 \mathrm{~K})
$$

Units essential (so 5438 alone scores 3 out of 4)
2719 K allow score of 2
$5.4(K)$ scores 2 for M1 and M2 only 1646 (K) scores 1 for M1 only
(ii) It would decompose into hydrogen and oxygen / its elements Can score this mark if mentioned in M2

Because ΔG for this reaction would be $<=0$
Allow the reverse reaction / decomposition is feasible Only score M2 if M1 awarded
(d) $\Delta H=T \Delta S$

Allow correct substituted values instead of symbols

$$
\Delta S=70-189=-119 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

$$
\begin{gathered}
\left.\Delta H=(-119 \times 373) / 1000=-44.4 \mathrm{~kJ}_{\left(\mathrm{mol}^{-1}\right)}\right)(\text { allow }-44 \text { to }-45) \\
\text { Allow }-44000 \text { to }-45000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right) \\
\text { Answer must have correct units of } \mathrm{kJ} \text { or } \mathrm{J}
\end{gathered}
$$

M3.(a) Standard pressure (100 kPa) (and a stated temperature)
Allow standard conditions. Do not allow standard states
Allow any temperature
Allow 1 bar but not 1 atm
Apply list principle if extra wrong conditions given
Penalise reference to concentrations
(b) Hydrogen bonds between water molecules

Energy must be supplied in order to break (or loosen) them
 Allow M2 if intermolecular forces mentioned
 Otherwise cannot score M2
 $C E=0 / 2$ if covalent or ionic bonds broken

(c) $T=\Delta H / \Delta S$
$=(6.03 \times 1000) / 22.1$
$=273 \mathrm{~K}$
Allow 272 to 273; units K must be given
Allow $0^{\circ} \mathrm{C}$ if units given
0.273 (with or without units) scores $1 / 3$ only

Must score M2 in order to score M3
Negative temperature can score M1 only
(d) The heat given out escapes
(e) (Red end of white) light (in visible spectrum) absorbed by ice

Allow complementary colour to blue absorbed

Blue light / observed light is reflected / transmitted / left Penalise emission of blue light

M4.(a) $\Delta G=\Delta H-T \Delta S$

> Ignore ө
(b) $0.098 \quad$ or $\quad 98$

Allow 0.097 to $0.099 / 97$ to 99
Allow 0.1 only if 0.098 shown in working
$\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1} \quad \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Allow in any order
Unless slope is approx. 100(90-110) accept only $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.
If no slope value given, allow either units
$-\Delta S / \Delta S$
(c) $\Delta \mathrm{G}$ becomes negative

Mark independently unless $\Delta G+$ ve then $C E=0$

So reaction becomes spontaneous/feasible
Or reaction can occur below this temperature
Or reaction is not feasible above this temperature
(d) Ammonia liquefies (so entropy data wrong/different)

Allow any mention of change in state or implied change in state even if incorrect
eg freezing/boiling

M5.(a) $\quad \Delta H=\Sigma\left(\Delta H_{\mathrm{f}}\right.$ products) $-\Sigma\left(\Delta H_{\mathrm{f}}\right.$ reactants $)$

$$
\begin{aligned}
& \text { I }=+34-+90 \\
& =-56 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \quad \text { Ignore no units, penalise incorrect units }
\end{aligned}
$$

(b) $\Delta S=\Sigma(S$ products $)-\Sigma(S$ reactants $)$

$$
I=240-(205+211 / 2)
$$

$$
=-70.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.0705 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Ignore no units, penalise incorrect units
Allow -70 to -71/-. 070 to -. 071
(c) $\quad T=\Delta H / \Delta S \quad / T=$ (Ans to part(a) $\times 1000$)/ans to part(b)

Mark consequentially on answers to parts (a) and (b)

$$
\begin{aligned}
& I=-56 /(-70.5 \div 1000) \\
& =794 \mathrm{~K}(789 \text { to } 800 \mathrm{~K})
\end{aligned}
$$

Must have correct units
Ignore signs; allow + or - and -ve temps
(d) Temperatures exceed this value
(e) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$

Allow multiples
(f) there is no change in the number of moles (of gases)

Can only score these marks if the equation in (e) has equal number of moles on each side
Numbers, if stated must match equation

So entropy/disorder stays (approximately) constant / entropy/disorder change is very small / $\Delta S=0 / T \Delta S=0$

